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ABSTRACT

Two theorems were derived. First, the Initial Response Theorem

describes the necessary and zufficient conditions for a series compensator

for a feedback control system to simultaneously stabilize the system,

and cause the initial system response to achieve prescribed constraints.

A single input-single output, continuous time linear system is considered,

with a delta function driving any rational transfer function in the

s-domain being the system input. Design constraints can be placed on

the initial response value, and on any of the derivatives (from the right)

of the initial response. Second, the Initial Response Parameterization

gives a parameterization of the complete set of compensators that will

meet the given constraints whenever the conditions of the Initial

Response Theorem are met. The area of Youla, Bongiorno and Jabr (YBJ)

Control Theory was used for the derivations, but first required a

system transformation to convert the initial value problem to one of

stability.
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CHAPTER I

I NTRODUCTION

1.1 Objective

The results of this thesis are two theorems. The first is named

the Initial Response Theorem (IRT), which describes the necessary and

sufficient (N & S) conditions for a series compensator for a feedback

control system to simultaneously stabilize the system, and cause the

initial system response to achieve prescribed constraints. A single

input-single output, continuous time linear system is considered. The

system can have as its input a delta function driving any rational

transfer function in the s-domain. Design constraints can be placed

on the initial response value, and on any of the derivatives of the

initial response, i.e., as time approaches 0 (0 from the positive

side). The second theorem is termed the Initial Response Parameterization

(IRP), and it gives a parameterization of the complete set of compensators -.-

that will meet the given constraints whenever the conditions of the

IRT are met.

The motivation for this work was the intuition that the shape of

the transient response can be controlled by controlling the initial

response. Thus, if the initial response and the asymptotic stability

can be simultaneously controlled, the designer will have a tool that

can help meet both transient response requirements and stability

requirements simultaneously. Examples of this technique are given in

Chapter IV.

The theorems are derived in essentially two stages. First, the

• I
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given system is modified to another system. Any compensator causing

the modified system to be stable will also cause the original system

to meet the desired constraints. Then, the relatively new area of

YBJ control theory, which is introduced in Section 1.3, is applied to

the modified system. This leads to the N & S conditions, and the

parameterization describing the complete set of compensators that

will stabilize the modified system, and therefore also meet the

constraints given for the original system. The constraint of system

stability is achieved by application of previous results in YBJ (10).

the initial condition constraints are met via the application of new

results in YBJ derived in this paper. All of the results assume that

the plant considered is a proper rational function.

1.2 Example

1T: 2

Figure 1. Example System

As an example, consider the system shown in Figure 1. The input

is an impulse, which is represented by a delta function driving a

transfer function of value 1. The plant has a transfer function

1
p(s) = (- <1.1>

-- - -- -
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and is unstable. It is desired that the system H vu(s) be stable,
v2u1  "-

and that the initial response v (0") equal 3.2.

The parameterization of the complete set of compensators that

stabilize the feedback loop has been found before this thesis (10).

Without going into further detail at this point, it will suffice to

state that this parameterization leads to c(s) of the form

-w(s) (s-1) + 2
c(s) = - s1 <1.2>

1 +'w(s) (s+ I .

where w(s) is any stable function.

The compensator must also meet the constraint v2 (0
+ ) equal 3.

The system has the transfer function 1i

H(s) I 1 • c(s)p(s) <1.3>

If <1.1> and <1.2> are substituted into Equation 1.3, then after some

manipulation

H(s) :-w(s) s-1 2 2 <1.4>

(s+1)

Also, according to the Initial Value Theorem

lim {sH(s)} = lim {h(t)} <1.5>
t-O+ -

where H(s) is the Laplace Transform of h(t). Thus, it is also required

that

(-I 2s }-
lim {-w(s) + 3s- <1.6>

in order to meet the initial response constraint. One could then search
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"brute force" for stable w(s) which satisfy Equation 1.6 in order to

solve the problem, and could achieve particular solutions such as

w(s) s+ <1.7>

(s+1) W.

However, the IRP in Chapter III yields the complete set of compensators.

The calculation is not difficult for this problem, and will be omitted

here to keep the example brief. But, when applied, the IRP yields ,.

2
w(s) -s -3s + 1 e(s) <1.8>

(s+l)2 s+,

as the complete parameterization, where e(s) is arbitrarily stable, and

c(s) is again described in Equation 1.2.

1.3 YBJ Control Theory

The foundation of YBJ control theory is two papers published in

1976 by Youla, Bongiorno, and Jabr (16, 17). A result of their work

was the complete parameterization of the set of stablizing compensators

for a multivariate feedback system, based on a new approach in feedback

system design. Since then, this new approach has led to similar

parameterizations of other problems, such as the tracking and disturbance

rejection problems (9, 10, 11), and also to results in optimization

theory based on the parameterizations found (16, 17).

The basic approach to discovering the parameterizations (other _

than the original stability parameterization) has been to arrange the

mathematics so that they, too, were a stability problem. Thus similar,

though different approaches to the original stabilization problem could

L
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be used. This then is the reason for the system transformation used

in the derivation of the theorems in this paper, as will be seen in

the following chapters.

The key to the YBJ approach is to use a "stable fractional

representation" for the transfer functions considered. This is

opposed to the "polynomial fractional representation" used classically.

For example, the function r(s) would classically be written in the form

r(s) = (S <1.9>.

where p(s) and q(s) are polynomials. But, YBJ requires that r(s) be

wri tten
n (s)°

r(s) = r<.10>
r

where n (s) and d (s) are both stable, and have no common (closed) rightr r
half-plane (RHP) zeros, including infinity. This is termed "RHP

coprimeness", or simply "coprimeness". Thus, if m(s) is a Hurwitz

polynomial of order equal to the order of r(s), then

n ( S ) = ( S < I .i i >"- '

and

dr(S) = (S) <1.12>

are possible representations for YBJ. Then, in the case that nr(s)

and d (s) are RHP coprime, YBJ dictates that there must exist stable

r

ur(s) and Vr(s) such that

ur(S)nr(S) + Vr(S)dr(S) 1 <1.13>

.7

. .
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This new representation is the basis of the YBJ control theory.

For further introduction to YBJ, the reader is referred to (10) which

is drawn upon extensively in this paper, and to (9, 11, 16, 17, 18).

1.4 Summary of Results

u2

u I  
_. e , I v , + e 

v _

Figure 2. General System Configuration

For the system in Figure 2, assume that t(s) represents a given

input to a feedback system H (s). Also, assume that the finite (realv u1

numbers) constraints {Y0, Y19... Iy. are given on the initial time

response of the system {v (0+ +), v(O+)}, where the superscript

represents the n-th derivative, and assume that the system Hv2 l (s) is to

be stabilized. Then define M to be the lowest order initial response

derivative specified that is non-zero, and define j as the highest

order derivative specified, so that j > M. Also, define r{H(s)} to be

the "relative degree" of a transfer function H(s), such that

r{H(s)}= (#finite poles H(s) - (#finite zeros H(s)) <1.14>

°-

... '
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Next define

n(s)
p~s) =~R~<1.15>

and nt(s)

tn(S) = sn+2 t(s) = n <116
dt (S) <.16>
tn

where n (s) is stable and coprime with stable d (s), and where nt(s) is
p n

stable and coprime with stable d (s).tn
n

With the above definitions in mind, the following theorom is a

major result of this thesis.

Initial Response Theorem

For the system in Figure 2, assume that r{p(s)}>O. Also assume

that

The input t(s) has fewer than three poles at s = 0. <1.17>

or

If the above condition is not met,

then {(#poles t(s) at s=O)-3}<{#zeros p(s) at s=O}. <1.18>

Then, a set of compensators c(s) exists that will simultaneously stabilize

H vu(s) (without RHP pole-zero cancellations between p(s) and c(s)), and
v2 1

meet the initial condition constraints {v,v (0+)} = {yo,...,yj}

if and only if (iff)

r{t(s)} + r{p(s)} < M+1 <1.19>

and

, °o

* . . . . . . . . ..°
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dt(s) and dp (s) are RHP coprime, <1.20>

which can be written (dt(s), dp(s)) = 1.

EOT (End of Theorem)

The proof for this theorem, as well as the resulting parameterization

for the complete set of adequate compensators are given in Chapter III.

The conditions given in equations <1.19> and <1.20> are not at all

obvious. In practice, <1.20> should not normally pose a problem, while

<1.19> will often be the more restrictive condition.

Though a different approach will be used in Chapter III to prove

<1.19>, some intuition can be given (unrigorously) for its necessity

now. It can be shown that the system H (s) has a relative degree
v 2u1

equal to or greater than that of the plant p(s), whenever r{p(s)} > 0.

Therefore, v2 (s) must have relative degree

r{v 2(s)} > r{t(s)} + r{p(s)} <1.21>

since the relative degree of the product is the sum of the relative

degrees. Also, the Initial Value Theorem (IVT) can be used to prove that

r{v 2 (s)} = M+1 <1.22>

Thus, equating <1.21> and <1.22> leads to <1.19>.

The assumptions made in equations 1.17 and 1.18 are used to

guarantee that a compensator meeting the n-th derivative constraint

will also meet the 0-th through (n-l)th constraints. However, they may

not be necessary conditions. At this time, a set of necessary and
.,

sufficient conditions have not been found, though the given assumptions

are quite unrestrictive. If they do pose a problem, the interested

Iii
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reader is referred to Chapter III for further details. Such a

I"guarantee" will be useful when applying the parameterization to be

derived later.

The remainder of this thesis is organized as follows. Chapter II

develops the system transformation, and develops a list of properties

associated with the transformation. Chapter III applies the YBJ theory

to the transformed system to discover the Initial Response Theorem and

the resulting parameterization. Next, Chapter IV contains design

examples using this theory. Finally, Chapter V contains a list of

recommendations for further research on this topic.

7... ...



CHAPTER II

SYSTEM TRANS FORMATION

2.1 Transformation Description

This chapter deals with the development of a system transformation

that modifies a given feedback system model so that YBJ control theory

can be applied in the next chapter. The transformation allows for

simultaneous system stability and initial response constraints to be

attacked with YBJ. The system is single input-single output continuous

time, and linear. The system input is a delta function driving a

rational transfer function.

As was discussed in the introduction, the approach to deriving

parameterizations for compensators using YBJ in the past has been to

look at each problem as one in stability. In some way, the algebra of

the problem was arranged so that stabilizing some quantity would produce

the desired results. Then, the YBJ 'theory could be used to find the

parameterization of compensators that would indeed stabilize the quantity

in question. Thus, the intent here is to derive a general system

transformation that leads to particular quantities, which if stabilized,

will cause the constraints to be met.

The problem at hand may have many constraints, but essentially

only two types. First, the feedback system must be stable. Second,

some initial value constraints must be met. Therefore, it is necessary

to derive some transformation that produces two quantities. The first

will stabilize the feedback loop when stabilized, and the second will

meet a desired initial condition constraint when stabilized. Thus, the

"%.
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basic transformation concepts to be used here are as follows. First,

the transformation of the feedback loop preserves the properties of

stability, so that stabilizing compensators in the transformed domain

also stabilize in the original s-domain. Because of this property,

the stability constraint can be met using a previously developed

stability parameterization. Second, the transformation yields a

system output that meets one of the initial conditions when stabilized.

Also, the transformation must have an inverse transformation, so that

the answer can be of use in the original s-domain.

2.2 Mathematical Transformation

The first step in developing the system transformation is to

develop a mathematical transformation that maps an initial derivative

response into the final value response in a new domain. For this

transformation let t and s represent the time and Laplace domain

variables of a transfer function as usual. Then, let t and s represent

the corresponding time and Laplace domain variables in the transformed

domain. As such, the following lemma describes the mathematical

transformation that performs the desired mapping.

Lemma 2.1

Let Hn(s) be the n-th derivative of a transfer function

H(s) = L{h(t)}. If Hn(s) is strictly proper, and if Fn(s) only has

poles in the left half plane, except possibly for a simple pole at

s=O, then

,° ,
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ur im (sI= r {-F (t)}1 <2. 1>

J imi {hn(t)} = ur {sHn(s),

where Hff(s) = -H (1) - i1 1 h (0+) <2.2>
n - n+2 s 1 0 n-i+1

and

- <2. 3>

Proof

The n-th derivative of a transfer function H(s) is equal to

n s) s) - n-i n-i-i <24
10

n > 0

where hi (0+) =i Urn{1 {H()} 25

The Initial Value Theorem (IVT) states that if H(s) is strictly proper,

lim {h(t)} =i [r sH(s)} <2.6>

Of course if H(s) is not strictly proper, no finite initial value

exists since there is an impulse at t =0. Then, combining <2.4> and

<2.6> leads to

lim +{hn(t)} lint {sH n(s)}

=lirn fs nH(s) - n- sih(0+) <2.7>
S- W i=0

if Hn(s) is strictly proper.

Next, define the transfer function

~n()=L{Wn(t)} <2.8>

S. A
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in another domain, with the given variables. Then, the Final Value

Theorem (FVT) states that if ~{()has no (closed) RHP poles, except

for possibly pole at s =0 (see (8), p. 714), then

lrn {h n(t)} lim {sH n(s)} <2.9>

At this point, a change of variables is necessary to force

lim {IT (t)} lim {hn~) <2.10>

This link can be accomplished by forcing equality in the Laplace domain,

by forcing

Ilim {sfT- (s)} li {srn s) <2.11>

n-1i
lim {n+1lH(s) E s - 0)

54~ i=0

If s and s are related by

s = 1<2.12>

then

Ilim 1 0 =lim s <2.13>

and

H -s E s . H 1  -h (0+)h <2.14>
i=0 s n+1 s =0 s n-1

Thus, equating the values inside the brackets in Equation 2.10 dictates

that

1 n-1

i~W n+1 H n-i h (0+) <.5

which leads to5i0
1 1 n-i1 <.6

HIs) -n+, H( h) 0+£ <h.16>
s 0=O
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Therefore, invoking Equations 2.12 and 2.16 force the equality of

Equation 2.11, and therefore also Equation 2.10, if the restrictions

described for the IVT and the FVT are met.

EOP (End of Proof)

Lemma 2.1 then is a mathematical transformation yielding a new

transfer function whose asymptotic value is equal to the initial

n-th derivative of the original transfer function response. Later

in this chapter a method of applying this to the feedback system shown

in Figure 2 will be developed so that the YBJ theory can be used to

meet the n-th derivative initial condition constraint. Also, Section

2.5 will prove that the restrictions on the IVT and the FVT will always

be met in this application.

2.3 Inversion Transform and Properties

Before applying the transformation defined in Section 2.2 to a

feedback system, it will prove useful to first define the transformation

T and its inverse T-1 as follows.

H(s) : T {H(s)} = H(-) <2.17>
=5

T{H(s))

The following properties associated with this transformation will also

be useful. The proofs for these properties can be found in Appendix A.

Additive Property

H(s) + F(s) T {H(s) + F(s)} <2.18>

Note that this property also implies the subtractive property.
.I.

I-i-
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Multiplicative Property

H(s)-F(s) = T {H(s).F(s)} <2.19>

Note that this also implies division.

Inverse Transform Property

= H(s) <2.20>

Transformation Stability Property

If H(s) is stable (or unstable) in the s-domain, then so is H(s) in

the s-domain, and visa versa.

2.4 System Transformation

A method of using the results of Lemma 1 to transform the system

in Figure 2 (reproduced in Figure 3, part a) will be derived. This

will result in the n-th derivative of the initial ouput of the system

lim {v t)} <2.25>

to become the asymptotic ouput (time approaches infinity) of the

transformed system. This model will then be modified so that the YBJ

stability criterion may be used to meet the condtion in Equation 2.25.

Define the transfer functions

tn(S) = sn+2t(s) <2.26>

tn(s) = n+ s

r Sr'(s) n-in-i+1 1 W <2.27>

n-i 1 i "-)

r (s) = -

"

i=0 2

Then Lemma 2.2 applies.

,, , *.. ; - , ,. , .j.. .. '.... ... . .. .. .. . ".
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a. Given System

I r'(s)

I I

b.InFreigre .ytmTransformation

In I

n -' + +.
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Lema 2.2

Given the system in Figure 3, part a, and the functions described

in Equations 2.26 and 2.27, the system in Figure 3, part b, will have

an ouput e3(t) with the property -

lim {e3(t)} = lim {vn(t)} <2.28>
t- 3 t4O+

Proof

The transfer function of the system in Figure 3, part a can be

calculated to be

Hv2e(S): t (s) P~s ) <2.29>

Then, invoking Lemma 2.1 would require a system with the transfer

function

1 1 c 1)( n-1ITn(S) _ t~s_ v-~-ps) 1-s- (0 + )

_ - =0 s n

: tn(S) 1- s- . n (S) <2.30>

via Equation 2.2, and invoking the multiplicative and additive properties,

as well as Equations 2.26 and 2.27.

The system in Figure 3, part b, has the transfer function

H- s)(s) P(S) <2.31>
e3 On nU- - s

Equations 2.30 and 2.31 are identical, revealing that Figure 3, part b,

is in fact consistent with Lemma 2.1.

EOP

YBJ theory requires a system which, when stabilized, meets the

required constraints. The property characterizing any stable system

-b-I~
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is that asymptotically the response approaches zero. Considering this,

if a different transfer function can be given that asymptotically

equals the response of the system in Figure 3, part b, then the .

difference between these would be asymptotically zero. Therefore, a

composite system equal to this difference would be stable.

A different transfer function with the asymptotic response vn(O + )

is the step function with weight vn(0+),

w (s 2 <2.32>

Then, the difference leading to stability would be the transfer function

e"n (s) = H - (s) - w)_ <2.33>
"- 4nOn 3n 0n- ''

But, an equivalent model for this system would be to add w(s) to

rn'(s), creating a new function, rn(S) as follows.n n~

rn(s) w(s) + rn(s)

v• n

v(O+) n-I 1i

i=O sn-i+1 
"

2

.

(S) n(0 + ) <2.34>n i=0 sn-i+ 1 Y2 _

This then leads to the following lemma.

Lemma 2.3

For the system in Figure 3, part a, let t(s), p(s), and the

initial response constraints {yo, yl,...yn" .. ,yj} (yi is finite, real)

be given. Then, substitute the initial response constraints into r n(s),

so that

I
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rn(S) =Yi <2.35> r

Then, the only compensators that will meet the constraint v2(O+ =-

which may possibly also meet the constraints (0+),..., v2 ()}

= .Y0 .." Yn-11 are those which stabilize H- - (s) in Figure 3,
4n On

part c, where r (s) is written per Equation 2.35.

Proof I_

Transform the system in Figure 3, part a, to the one in Figure 3,

part b. Then, in accordance with Lemma 2.2

lim {e3(t)} : lim {vn(t)} v(0+) <2.36>
_- t-4 +  .-..

Also, let

w(s) Yn <2.37>

lim {w(t)} Y
t4c0

and define H- e (s) by Equation 2.33. Then, H e (s) will be
4n On 4n On

stabilized only if H- - (s) {which is equal to e3(s)} and w(s) aree en3n on

asyptotically equal. This of course requires that

Yn vn(0+ ) <2.38>

by equating Equations 2.36 and 2.37.

Therefore, consider a compensator c(s) which leads to the system

in Figure 3, part a, with inital response values {v (0+)}.

Then, use these values, and let v for Equation 2.34. As
2 n

such, if H- - (s) in Figure 3, part c, is stable, then Equation 2.38
4n On

applies.

I,

S * * !
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Note that the above argument does not consider the constraints

Thus, such a compensator may or may not meet these

constraints. However, if it does, then obviously these constraints

can be substituted for {v (0+),..., vn1  in Equation 2.34. Thus,

making this substitution, and invoking Equation 2.38 into Equation 2.34,

leads to Equation 2.35. Stabilizing the system in Figure 3, part c,

using Equation 2.35 therefore leads to a compensator that meets the

constraint Yn' and may (no guarantee yet!) meet {yo,..., Yn-1 " Also,

if it does cause the system to meet {yo,..., Y then H- - (s) muste4n e-

nObe stable when defining rn(s) according to Equation 2.35.

EOP

rn(s)

u

Figure 4. Final System Transformation

For the system in Figure 4, define
= -1 s)1 =n+2

tn(s) T- {tn(s)} s t(s) <2.39>

nrn(S) = I r = sn-i+ l -1

per the transformation in Equation 2.17, using the inverse transform

• o " •

. . .-.- . , - - . .. 'y . -.- i . . -. . .. . . . .i. --- i i , . - .. . -. - . .,. ... ,. i -. . - - - .--- i .
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and multiplicative properties, and per Equations 2.26 and 2.35. Then a
the following theorom applies.

Theorem 2.1

For the system in Figure 3, part a, let t(s), p(s), and the

initial response constraints {yo, yl,... yn"'".Y.} be given, and
0 n j

define tn(s) and rn(s) per Equation 2.39. Then, the only compensators

that will meet the constraints v2  which may possibly also meet
the constraints v 2(0+), v 2 2 (0+)' =  ' Y'"" Yn-1 }' ""

are those which stabilize H (s) in Figure 4.e 4n eon 
t

Proof

The additive and multiplicative properties dictate that transforming

a system from the s-domain to the s-domain, and visa versa, may be

accomplished by transforming the individual transfer functions within

the system separately. Therefore, the system in Figure 4 is the s-domain

equivalent to the s-domain system in Figure 3, part c. Also, by the

stability transformation property, these systems are either both stable,

or both not stable. Therefore, since the statement in Lemma 2.3 relies

only on the stability of the s-domain system, an equivalent statement

can be made concerning the system in Figure 4.

EOP

With Theorem 2.1 in hand, the system in Figure 4 can be used for

the application of the YBJ theory to find the stabilizing compensators

that meet the initial response constraints. This will be accomplished ""

in Chapter III.

-a

. . . . . . . . . . . . . . .. . . . . . . . . . . . .. 4
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2.5 Restrictions Due to IVT and FVT

The system in Figure 4 is the model from which a complete stabilizing

parameterization is to be derived in the next chapter. However, this

model is based upon the mathematical transformation in Section 2.2,

which incorporates the IVT and FVT. At that time it was mentioned

that both of these theorems have restrictions on their application. The

intention here is to prove that this model will always be within the

bounds of these restrictions, so that a complete parameterization can

in fact be derived based upon it.

First consider the IVT, which states that if H(s) is strictly

proper, then

lim {h(t)} = lim {sH(s)} <2.40>

In effect, this (strictly proper) says that there must be a finite

initial value in order to apply the theorom. If H(s) is not strictly

proper, the initial value is undefined (infinite), and therefore equality

cannot hold, even though the IVT will also yield an infinite initial

value. Thus, this restriction simply requires that the constraints

{Yo, YI'"".. Yj} be finite.

The FVT states that if %_(s) has poles that lie entirely within

the left half plane, except possibly for a simple pole at s=O (see

reference (8), p. 714), then

lim (h-n(t)} : lim {S7(S)} <2.41>

_ S-O0

. . . . . . . . . . . . . . . . . . . . . . . . .
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For the system model here,

ign(S) -- (s~) - r'(s)
eon

Yn
H- - (s) - r_(S) -V2neOn- n _

Yn '
He (s) - <2.42>e4n On -

and R- - (s) will always be stabilized. Thus, since H(S) is the

e4n eOn-

sum of proper functions, it will be proper. Also, its poles will be

those of its components, unless some are cancelled. Therefore, it will

be stable, except for possibly a simple pole at s=O, so the FVT

restrictions will always be met also.

2.6 Summary

Stabilizing the system model in Figure 4 has been shown to be

N & S to guarantee that the n-th derivative initial condition be met,

where the 0-th through (n-1)th initial conditions could possibly also

simultaneously be met. It will be shown in the next chapter that

meeting minor restrictions will guarantee the first n constraints are

met simultaneously when meeting the n-th is accomplished.

Another feature of this model is that the feedback loop portion

of the system is identical to that in the original system. This is

important since it is also desired to stabilize this loop, and convenient

because previous work in YBJ (10) has already solved this problem.

.......................................... .- . . . ... . .*.. .



CHAPTER III

INITIAL RESPONSE THEOREM AND PARAMETERIZATION

3.1 Introduction

The IRT and IRP are derived in this chapter. The proceeding

derivations are based on the system in Figure 4 of Chapter II.

3.2 Definitions and Properties

Some general definitions and properties from reference (10) are

needed for the work in this chapter.

Definition 3.1

Given two transfer functions, x(s) and y(s), then y(s) divides x(s) if

X(s)<31
- ) = y' (s) <3.1>

where y'(s) is stable. Notationally, this is written ylx.

Definition 3.2

Two stable transfer functions x(s) and y(s) are RHP coprime, or simply

coprime, if they have no common RHP zeros. Notationally, this is written

(x,y) 1.

Definition 3.3

The transfer functions x(s) is said to be miniphase if it is stable,

and has a stable inverse. V

Property 3.1

If x(s) and y(s) are stable and coprime, then there exist stable u(s)

and v(s) such that

u(s)x(s) + v(s)y(s) = 1 <3.2>

Also, if <3.2> is valid for stable x(s) and y(s), then they are coprime.

oo,,

r=-1

. .~~~~ .. . . . .,, ,,.*.. . .. .. .. . ., ,. . . ,



25

Property 3.2 '

Let

x (s)r(s) = Ys <3.3>

where xr(s) and yr(s) are both stable, but may not be coprime. Also, let

r(s) = r<3.4
r

be a coprime stable fractional representation for the same r(s). Then

there exists a stable k(s) such that

Xr (s) = nr (s)k(s)

and

Y = dr(s)k(s) <3.5>

Theorom 3.1 - Stabilization Theorom

For the feedback loop in Figure 2 with transfer function H (s),
V2U1

and therefore also for the equivalent feedback loop in Figure 4 with

transfer function Hv2nu (s), let the plant have a coprime fractional
n I

representation

n (S)
p(s) = <3.6>

p

There then exists stable U (s) and v (s) such that
p p

u (s)n (S) + V (s)d (S) = 1 <3.7>
p p p p

Then for any stable w(s) such that w(s)n p(S) + v p(s) is not identically

zero, the compensator

{-w(s)d (S) + u (s)} inc(s)
c(s) = + <3.8>

stabilizes the feedback loop and yields a coprime fractional

S. . . . . . . ..
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representation on

{np (s)nc(S)
p(s)c(s) = <3.9>

P(S~c~s) {d (~ TTs)

Conversely, every such stabilizing compensator is of this form for

some stable w(s). Note that Equation 3.9 guarantees that there are

no pole-zero cancellations between the plant and the compensator.

Property 3.3 1

For the same feedback loop, if c(s) is described by Equation 3.8

then

H s) = Hn ( = -w(s)n (s)d (S) + u (s)n (S) <3.10>

v U1  2n n p p p

3.3 Problem Formulation

Both the feedback loop and the entire system in Figure 4 must

be stabilized. Theorom 3.1 describes the parameterization stabilizing

the feedback loop portion, so the desired compensator stabilizing both

quantities must be a subset of this form. Referring to Figure 4, define

n Z(s)

Zn(s) = e4n(S) = <3.11>
zn

and invoking Equation 3.10

z n(S) = tn(S) {-Wn (s)n (s)d (S) + u (s)n (s)} - rn(S) <3.12>
n n n p p p pn

where t (s) and r (s) are described per Equation 2.30. Thus, the
n n

objective here is to stabilize z (s) whenever w (s) is stable. A
n n

parameterization that stabilizes zn(s) guarantees that vn(O+) = Y

It may not necessarily guarantee that any other derivative constraints

are met, however. This problem will be considered later in this chapter.
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3.4 System Properties and Definitions

In this section groundwork is laid in preparation for analysis

of the system in Figure 4 and Equation 3.12, leading up to the IRT

and IRP. Several properties and definitions will be required.

From Equation 3.12, define

n t(s)

(s) : tn <3.13>
tn

and nS)n r~s
rn(s) =T'-

r n

to be stable coprime fractional representations of tn (s) and r n(s).

As such, by Property 3.1 there exist stable u's and v's such that

ut (s)n t(s) + Vn(S)dt(s) 1 <3.14>

and

ur(s)n (s) + v(s)dr(s) 1
r n rn rn n

Then, based on the assumption that the plant is a proper rational

function, the following property holds.

Property 3.4

The plant and rn (s) are such that

(d (s),d (s)) : 1 <3.15>rn

and therefore there exist stable u (s) and v (s) such that
UrrnSVrp( d(n""

u (s)d(s) + (s)d (s)=I <3.16>rnp rn rnP pn n n

. 5. .,.- - . - . -



28

Proof

The plant is assumed to be proper, so that r{p(s)} > 0. Thus,

the hurwitz polynomial which would be used as the common divisor of

both the numerator and denominator to create n (s) and d (s) must bep p;
of the same degree as the denominator. Therefore, r{d (s)} = 0. Such

p
a function could have zeros only at finite values of s.

On the other hand, r (s) was described in Equation 2.39 to be a ..n

polynomial in s, such that, considering that some yi's could be equal to

zero

-n < r{rn(S)} < 0 <3.17>

If r{rn(S)} = 0, then r (s) is identically zero, so n (s) must equal
n n rn

zero. Therefore,

Vr (S)dr (s) 1 1 <3.18>
n n

in which case d (s) is proven coprime with d (s) by letting u (s)rn p r-P

equal zero and v (s) equal v (s). Also, if r{r (s)) < 0, then

obviously r{dr (s)}> 0, and dr (s) has a constant as it numerator. In this

case, dr (s) must be zero only at infinite values of s. Thus, dr (s) andn n

d (s) never have common RHP zeros, and therefore are coprime.
p
EOP

Definition 3.4
Define a (s) such that

n

n (s) na(s)
an(s) n d =dan u (S)na (s) + Va(s)da (a) 1 1 <3.19>

t an n n n
n n

............ ~1.. ...-.

.. . . . . . . .. *.. .. - . . . . . . . . . . . . . .o,
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This function has the same finite zeros as the plant, and the same

finite poles as t (s), less those that cancel.n

Definition 3.5

Define bn(s) such that

d (s) nb(s)
b (S) d ; ub(s)n (s) + Vb(s)db(S) =1 <3.20>n d.. s) bs bb b bn n nn n

This function has the poles of p(s) as its finite zeros, and the same

finite poles as t (s), less those that cancel.
n

The above definitions will be needed later in this chapter, and

lead to the following two properties.

Property 3.5 -.

Invoking Property 3.2 into Equations 3.19 and 3.20 leads to the
conclusion that there exist stable m (s) and m

folloing.an nmb(s) which satisfy thefollowing.

m(s)n a(s) = n p(S) ; m(s)da (s) =d t(s)anp an n n

<3.21>
mb(s)n ): dp(S) ; mb(s)db(s) : dt(s)

n nn n n

Property 3.6

The functions ma(s) and mb(s) are coprime.
n

Proof

Per Equation 3.7

up(S)np (S) + v (s)d (S) 1 1
p pp p

Then, substituting for n p(s) and dp (s) from Equation 3.21 yields

p p
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u p(S)m a (s)n a (S) + v p(S)m b(s)nb (S) 1
n n n n

fu P(s)n a(s))ma(s) + 'vp(s)n (s)}mb(s) =1<3.22>

p a n n~ bn

which proves m a(s) and m b(s) are coprime by Property 3.1.

EOP

Definition 3.6

Define d (s) as follows.cn

db

d () mn ST<3.23>
Cn mans

Property 3.7

The function d (s) is stable.cn

Proof

By definition

d b(s)

d (s)= n
Cn mas

n

Multiplying by one, in the form of Equation 3.22 leads to

db(S)

d S j:nj {U ( (im(s + V (s )nb(S)m (s)}
n a n n nn

d b(s)vp (s)n b(s)mb(s)
=dsu (s)na (S) + nn <3.24>b( ~p arm(S)n n a n
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* But,

mb(s)db(s) dt(S)
n n n

m (s)d (S) 7an a ~ dt~n n n

so

mb(s) da(s)
<3.25>M, TT d s)

n bn

Then, substituting Equation 3.25 into Equation 3.24 yield
dbsv (5)n n(s)da(S)

d c(s) db(s)up (s)n a(s) + n (S n
n n ndb~

n

d~ (s) d d(s)uP (snanS + v (s)nb(s)d (S)

n n n n n

which is stable since it is the product and sum of stable functions.

EOP

Note that qualitatively d c(s) can be thought of having as its

cn

finite zeros the finite poles of tn(s) that are not common with the.-

finite poles and zeros of the plant. Two more proDerties will be

needed concerning d c(s) before the preceeding definitions and properties
cn

are used to analyze Equation 3.12.

Property 3.8

dt(S) m m(S)mb(s)dc(S) <3.26>
n n n n
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Proof

From Equation 3.21

mb s)db(s) = dt(S) <3.27>

n n n*

and from Definition 3.6

db(s)
d C(S) KT

n an

or

d (S)m (S) () <3.28>
Cn an nd~s

Therefore, substituting db(s) in Equation 3.28 into Equation 3.27 yields
n

m (S)mb(s)dc(s) d d(S)
n n n n

EOP

Property 3.9

The function d cs) is coprime with the quantity n a(s )n b(s)n t(s),
Cn an n b

so that there exists stable u (s) and v (s) where
sn sn

u5 (s)na(s)n (n (S + v (s)d~ (S) =1 <3.29>
sn an bn tn Sn cn

Proof

This proof is in four stages. First, (d (s),n (s)) =I is proved
C tn n

as follows.

u t(s)nt(S) + vt(s)dt(S) 1
n n n n
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and invoking Property 3.8 leads to

{ut Win (S) + {v (s)ma(S)Mb(s)jdc(S) =1 <3.30>
tn n n an bn cn

Next, (d (s), nb(s)) -1 is shown as follows.
n n

ub(s)nb(S) + vb(s)db(S) I
bn bn bn bn

and substituting for d b(s) from Equation 3.21 yields

dt(s)

ub(s)nb(s) + yb(s) 9mn n n mb~s)
n

Then, substituting for dt(s) according to Equation 3.26 leads to
n

{u s)in~s + vsm()d (s) =1 <3.31>bb b~s {v~~ a cn n n n n

Thirdly, (d Cs), n a(s)) =1 can be shown as follows.
n n

ua (s)na (S + Va (s)da (S) 1
an an an an

and substituting for d (s) according to Equation 3.21 and invokingan

Equation 3.26 leads to

(s)n(S) +v (S) mT 1 =1a n an an a ns)

{ua(s))na(S) + (Va (S)mb(s)}dC(S) =1 <3.32>

n n n n n

Finally, multiplying the three preceeding results together leads to

the following result. Note that to save space, the variable s and

subscript n have been omitted from the equations.
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1= x lxi

fu {U nl + v t mambdc}{u'b nb + vbma dcl {ua na +vamb dc}

+ v + v md n + mmd E

{tfl b ~ ' b a c t a bcub

+ vtnm md uvb+md n m{al + vmd

{t b a alafbl {tnt b a cab

+tv m nu n +tntvbmdvmbn

t a bb baa t ambdcub bvAm

+ Vtm mbvmd un + vtmmdcv madcvambIdc

The quantities inside the brackets are stable since they are the products

and sums of stable functions. Therefore d (s) is coprime with the
cn

quantity n a (s)n bsWn t(s).
n n n

EOP

3.5 System Analysis

Using the preceeding definitions and properties, Equation 3.12 will

now be analyzed to find the N & S conditions that guarantee stability

of both z nCs) and w nCs) at the same time. The following property is

presented as an intermediate step towards more specific criteria for

stability.

Property 3.10

Equation 3.12 admits stable z (s) and w (s) if and only ifnl n

(s)n Cs)n.S x (Sp p ns xn~

9 (S) =n<3.33>
an

n
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and

u (s)n (s)nt(S) - X(S)p p t n n
knS (S) =<3.34>

mb(s)
n

are stable, where

nr(s)dt(s)

(S)  <3.35>n dr(S)
n

and where x (s) is stable.
n

Proof

Equation 3.12 is rearranged as follows.

Zn(S) = tn(s){-wn(S)np(s)dp(S) + u(S)n p (S)} - rn(S)

n (s) nr(S)". tn n
{-Wn(s)n (s)d (S) + u (s)n (s)} drns)

-d~s) (-w p p p p rn-Fs
n

Zn (s)dt(s)dr (s) n t (s)dr (s){-wn (s)np (S)dp (S) + up (s)np (s)}.n n tn rn

,'.~ -n(s)d (S)
rn  tn
n n

and

z (s)d t(s)dr (s) + w (S)n p (s)d n (S)dr(S) - U(s)n (s)n (s)d (S)n- n n +ws p (sp C p p tn r n

= r(s)dt(S)n n%-nr(s)dt(S)

zn(S)dt(S) + Wn(s)n (s)dp(s)nt(S) - U(s)n(s)nt(S) = dr(s)n n
n n n p n p n rs

n
=-X n(S)

=-bs

p'n
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x (s) must be stable since it is equal to the product and sum of stable

functions when z (s) and w (s) are stable. Then, substituting Equationsn n
3.26 and 3.21 into the above equation and rearranging leads to (omitting

the variables and subscript n)

zmambdc + wmanmbnbn - Unn = -x
a b c a ab bt Pppt

(zdc + wn nbnt)mmb = unpnt - x

zd€ + wnanbn p mamb <3.36>

c abt mamb

If z (s) and w (s) are stable, then the left side, and therefore then n
right side of Equation 3.36 is stable. Also, in this case, if Equation

3.36 is multiplied by either ma(s) or mb(S)
n

(zdc +wnnnt)m m k <3.37>
a a b

unn - x
(Zdc + wnanbnt)mb m <3.38>

a
the left side of the equation is still stable. Therefore k (s) and

n

gn (s) are stable. Thus far we have proven that in order for a solution

to exist, the right side of Equations 3.36, 3.37, and 3.38 must be

stable. To prove that stable kn(s) and gn (s) is sufficient for the

existence of stable z (S) and w(s), first multiply the right side of
n

Equation 3.36 by one, in the form of Equation 3.29. V

unn - x
zd + wn n n = p {usnanbnt + vsd c}c abt mamb

(upnpnt - x)v (u n n_- x)u n

mamb }dc+{ mamb abt
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Therefore, if Equation 3.36 is stable, then particular stable solutions

obviously exist for z n(s) and w n(s). Also, <3.36> is stable whenever

gn (s) and kn (s) are stable. This can be proven by multiplying by

Equation 3.22, as follows.

unn - x unn - x

mam mamb p a a Vpnbmb}

upnpn x u npn x
Upna + P P m I v n

mbma p

kupna+ gvpnb<3.39>
=kupna g Vpnb

Thus, if kn (s) and gn (s) are stable, the right side of Equation 3.29

is stable, and therefore, also the left. Finally, to show that k n(s)

and gn (s) must be stable if 3.36 is stable, let

u (s)np (s)nt(S) - Xn(S)
m (s)m (S) = n(S) <3.40>

an n

where z'(s) stable. Then multiplying by m (s) yields
n an

kn(S) m (s)z'(s) <3.41>
n n

which must be stable if Zn(S) is stable. Also, multiplying <3.40> by .

mb(s) leads to

n 
-

gn(S) mb(S)Zn(S) <3.42>

n

which is stable. Therefore, it is both necessary and sufficient that

x (s), kn (s) and g (s) are stable in order for Zn (s) and wn (s) to both
,-nn
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be stable.

EQ P

The above property defines the basic mathematical commodities that

must be stable in order for a solution to Equation 3.12 to exist. I

However, the commodities are derived mathematically from the original

I I I

system, and give a designer no "feel as to their meaning. In practice,

one would like the necessary and sufficient conditions to be related

simply to basic system properties which are not derived mathematically.

With this goal in mind, the quantities given in Property 3.10 are

further analyzed as follows.

Property 3.11

bn

is stable.

Proof

Again, omitting the variable s and subscript n for compactness

X d r

by definition, so that

Then, using Property 3.8 yields

x - r abdc rmac
mb d m drrb

... %
Howeerthe ommdites ae drivd mahemticlly romtheorignal,"-
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* Multiplying by one in the form of Equation 3.16 leads to

nm
__ rac{u d + v d}

mb dr rp r rp p

n md u + nrac vrp dp
r ac rp dr

Then, substituting for d (s) according to Equation 3.21 leads to
p

n nm du n+ vm
mb racrp dmb r

n m du + vramd n
r a crp d r rp b

n m u x pn<3.43>mb r a crp rpb

The right side of Equation 3.43 is stable, and therefore so is the left.

EOP

Property 3.11 in itself provides no further immediate insights,

but it does lead directly to the following lemma which does.

Lemmna 3.1

Equation 3.34 admits stable solutions iff

(d (s),d (s)) =1 <3.44>
n

If this is the case, then there exist stable ut (s) and vt (S)

such that

Ut (s)dt(S) + vt (s)d (S) =1 <3.45>

n n n

17
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Proof

Rearranging Equation 3.34 as follows,

u (S)n n(s) - x(s )
kn(s) = mb ) n-s

b(s)
n

uxs)n (S)n (s) nS)
k - p mb -)

n n
tn ~<3.46> -T

If kn(s) is to be stable, then the left side of <3.47> is stable by

n

invoking Property 3.11. Therefore, the right side must be stable also."--.

I ~ ~Stability of the right side of <3.47> sufficiently guarantees stability i--

of kn(s), since in this case Equation 3.46 represents kn(S) as the sum

Referring to Equation 3.44, if either dt (s) or d(s) arleminiphase,

n
then they are obviously coprime. This can be proven by multiplying the

miniphase function by its inverse (yielding 1) and the other function

by zero. Thus, we have narrowed the proof down to the case where both

functions have zeros in the RHP.

Equation 3.20 effectively cancels the common zeros between d (s)

and dt(s) in creating nb(s) and db(s), which in effect are then equal

n n n

to the first two functions less the common zeros. Then, by Equation 3.21,

d (s) d s)_

n b5  b sn n

• .I

- ..

* *. -*. .* .*. .. ** . . .* . . .. !
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Thus, mb(s) is the original function divided by itself without the

common zeros, yielding a function only containing all zeros that are

common between d (S) and d (s).
pt n %

If dt(s) and d (s) are not coprime, then the above argument dictates
n

that mb(s) has RHP zeros, and is not miniphase. Then, to stabilize
n

<3.47>, it is necessary that (mb nunpnt n). But, d (s) is coprime with
n n

u (s)n (s), because
p p

{1}u (s)n (S) + {v (s)} d (S) = 1
p p p p

Thus, mb(s) is also coprime since it only has zeros from d (s).
n

Therefore, mb(s) must divide nt(s), and in order for this to occur, it
n n

must have common zeros. But, mb(s) also derived its zeros strictly
n

from d t(s) which has no common RHP zeros with n t(s). Therefore, m b(s)
n n n

can not divide n t(s). This proves that mb(s) must be miniphase, also
n n

proving that d (s) and d(s) must be coprime.
p dt~

n

EOP

Lemma 3.1 provides the necessary and sufficient condition in

order to stabilize Equation 3.34. It is interesting to note that the

lemma simply requires that the plant not have any common RHP poles

with the input, less perhaps up to (n + 2) poles at s = 0 of the input.

For most systems, this of course should present no difficulty, and

therefore is not a very strict condition. The condition necessary to
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stabilize Equations 3.33 and 3.35 must still be derived. The following

property leads towards Lemma 2, which does this.
j ;,i.

Property 3.12

If kn (s) is stable, then gn(s) is stable iff dr(s) divides d_(s),n c n

in which case x (s) is also stable.

Proof I

If d (s) is miniphase, it will always divide d (s). Attentionn "n 27

must then be focused on the case where it is not miniphase. Then,

using Equation 3.21
u snp(s)n t(S) u p(S)ma (S)n a S)n t(s).:

np p pnan n n

ma(s) ma(s)

p an(s)n (s)n (S)

which is stable. Thus, rearranging <3.33>,

u (s)n (s)nt(S) - (S)
gn( s ) = p maCS) n xns)

x9 (s) an

= up(s)n (s)nt(s) - mnns)

n n a"n

SX n ( S )
.--

gn (S) + Up (sS) s n(s) = - (S) <3.49>
n n a n

Equation 3.49 shows that the right side must be stable if gn(s), and

therefore the left side, is stable. Equation 3.48 shows that if -:

X nCs)

annI

7i.



43

is stable, then so is gn(s). Thus, stabilizing this term is necessary

and sufficient to stabilize g (s). Then, invoking Equations 3.35 and
n

3.26 leads to

Xn (s) n r(s)d t(s)
" man iF{~ dr-n s)m a ( s ) :

n n n

nr(S)ma(S)mb(s)dc(s)n an bn Cn -"
dr(s)m (s)
n an

nr(s)mb(S)dc(S)" "-.-
n d ns) n <3.50>

d (s)rn

which must be stable. Analyzing <3.50>, one notes that d (S) mustr

divide the numerator, since we are concerned with d r(s) not miniphase.n

But, it can not divide n (s) even partially since they are coprime.r n
Also, in the case that k (s) is stable, during the proof of Lemma 3.1,

n

it was shown that m (s) is miniphase, so dr(s) cannot divide m (s) either.
n n n -,

Therefore, in order for g (s) to be stable when k (s) is stable, d (S)
n n r

must divide d C(s). Note that this condition also guarantees xn (S) is
cnn

stable, since

d (s)(sd Sm(~ c S ..A

n n n n rn

EOP

The above property still does not relate directly to system

quantities, since d (s) is derived. Thus, the following lemmas is given,cn

nI
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whose proof further analyzes the condition in Property 3.12 in order to r
determine what is physically meant by the statement.

Lemma 3.2

If kn(s) is stable, then gn(s) and x (s) are both stable iff
n n n

r{t(s)} + r{p(s)} < M + 1 <3.51>

where M is the lowest order initial derivative constraint not equal to

zero, i.e., yi = 0 for i < M, and YM 0.

Proof

If kn(s) is stable, then by Property 3.12 gn (s) and Xn (s) are

stable iff (dr ldcn). Thus, this condition must be analyzed to seer c-n n
when it occurs.

Before proceeding further however, the following shorthand notation
is introduced which will prove useful. First, let 0 (n) represent a

5

stable (hurwitz) polynomial of order n, and let 0u (n) represent a

general polynomial of order n, where n is an integer. In this notation

if n is less than zero, then

0(n) = <3.52>

0(-n)

Equation 2.39 defined

n sn-i+1
Yi 0n i=0 -

and t (S) =sn+2t(s)

Let M be the lowest degree initial response constraint not equal to

zero, so that YM is not zero, but (Y0""'YM-1 = 0.

I{
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Then,

r~ CS) =nM+ + + sy~ 0 (n-M+1) <3.53>

The coprirne representation of r (S) is then
n

0 (n-M+1)
o (n-M+1) nr (s

rn(S) 0 (n-M+1)=

Os (n-Ms-) rn
SL

and

dirnS) 0 0(n-M+l) <.4

The plant is such that r{p(s)} > 0 by assumption. Theref'ore, the

coprime representation of p(s) is developed as follows.

0 (x)

0 ( n (s)

s p
n+2For the coprime representation of t n(S) =S t(s), it is necessary

to know how many poles at s =0 t(s) has. Thus, let

t(s) =U t)<3.56>
Cs 0 (Y

u t

where c is a non-negative integer, and where 0~ (y t represents a

polynomial that is not divisable by s. Also, if c is positive, then

0 (xt is not divisable by s. Then,

S n+ 2 Q(x) S n+2-c 0(x)
t () = U t U t

n sco(> T7
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There then are two possibilities for dt(s), as follows.

Ou (Yt)

dn (s 0 s(max{yt,n+2-c+xt})

when

n+2-c > 0

and C n2O(Y) <3.58>

t(s) (max{xt,cn32+yt>-n n-2+t} 1

when

c-n-2 > 0

The remainder of this proof must then be in two parts, since it is

dependent on d (s). First, consider when <3.57> applies. Then,

n

n 1s)ans)) i n-(-
an dt : np dt(s)

n n

0 u(x ) Os(max{yt,n+2-c+xtl): u-t <3.59>

Coprime representations do not require cancellations between stable poles

and zeros, but it does between unstable ones. Thus, let A be the number

of common unstable poles and zeros in <3.59>, which must be contained

within 0 (x ) and 0u(Yt). Thus, let 0 (x -A) and 0 (Yt-A) represent
u p uyt u p- uyt

the just mentioned polynomials without the A common terms, so that

0u (xp-A)0s (max{ytn+2-c+xt })
n Ou(Yt-A)Os (Yp)
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*The proper coprime representation of n a(s) is then

O S (x -A)05 (max{yt,n+2-c+x t})<.0

To condense the equations, it will prove useful to let

max{yt~n+2-c+xt I B1  <3.61>

and

max{x -A+max tn2-xly A =
p xYn+cx ttA+} B2

so that

0 O(x -A)O s(B1)
n <3.62>
n 2

and

d0s (yt

Then,

n (S) 0 x (X Os0(B2
mas i -IH 0 (X A)O (j
n a n s Pu P

- s A0( 2) <3.63>

To calculate d (s), Equation 3.26 is used, so that k

n
cn~ tlsm(s)

n

Earlier in this paper it was shown that mb(s) must be miniphase in order
n

for a solution to exist. Thus, let x b Yb' so that.

m o(x)<3.64>

b~s) Os I

n. s b
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and 5

(y) 0(y)O(B ) 0~
d (S)=Ou t 4 s & yb

Os B1)Oj AOT 2J~~

o ty S A)0 Y <3.65>

0 (B )0 (B )0 (xb

Finally, d Cs) must divide d (s), s0 that
r n C n

d C(S) 0 (y -A)0 ( )o (B l)0 ~b0(n-M+1)
n -U t S p s 13.66

0 (B B)0 (B )0 (xb<366

must be stable. Note that the denominator contains only LHP poles,

since it is the product of stable polynomials. Therefore, the quotient

is stable iff the degree of the denominator is equal to or greater than

the degree of the numerator. This requires that

Bl1+B 2+X b > n-M+l+yt-A+y p+B 1+yb

or, cancelling like terms and noting that ~ b

B2 > n-M-1+2+Yt-A+y~

or

M+1 > Y +y -A-B +n+2 =B 3  <3.67>

Then analyzing <3.67> further,

B 3 =yt+yp- A+n+2-B 2

since -maxfa,b} min{-a,-b}. Then, adding the term inside the
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parenthesis to both sides inside the min function,

B3  min{yt+y A+n+2-xp+A-max{Yt,n+2-c+xt}, t+YpA+l+2 yt+A-y I

= min{Y t+y p+n+2-x p-maxfyt ,n+2-c+x t ),n+21

= min{(yt+Y +n+2-x )+min{yn2cxJn1

= mn~mn~y~y n+2x {tyt~ n2cx -n2} ,n+2

= i~i~ -x++, C-tyx}n 2 cxt n<3.68>

The first quantity in the interior min function is y -x +n+2. But,
p p

according to Equation 3.55, x~<y, Therefore,

y -x +n+2 > n+2

s0 <3.68> can be further reduced to

B3  min{n+2,yt+c-xt+y .x }

M+1 > minfn+2,yt+cxt+y x 1 <3.69>

Thus, in order for d (s) to divide d (s), the inequality in Equation 3.69r n c n

must be met. But, M < n, so M+1 cannot be equal to or greater than n+2.

Therefore, the inequality must relate to the second term within the min

function. Also, noting that

Yt +C-xt r{t(s)}

and

- r{p(s)}

we can finally state that the necessary and sufficient condition is that

m+I > rtt(s)} + r~p(s)} <3.70>

The above inequality is based on dt(s) according to Equation 3.57,
n
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leaving the inequality based on d t(s) according to <3.58> yet to betn .

proved. This proof is similar to the one just given, and is also

lengthy, so in order to condense it many of the comments between steps

will be omitted. First, however, it will prove useful to modify <3.58>

so that

dt(s) = O (c'-+t..-
n 0n (c-n-2+Yt) ; c-n-2 > 0 <3.71>

n~s 0(m x)~--+ 0~ Ax~~cn2y

n s B5

Then,

n p(s) Ou (x) O 0s (maxtxtc-n-2+Y ti) '"

BnS = dtn- = Ou (c-n-f+y t ) .

0 (x-A' O (max{xt' c-n-2+y+Y A
0 (c-n-2+Y -A' (Y) O B <37>

0 (x'A'()O (B4 ) p 4)

an an s p4p)( 4 0()(

n (S) - Os <3.73> ..""%..

where... -

B4  max{xtc-n-2+Yt -I'...

B5  maX{xp-A'+B4,c-n-2+Yt-A'+y p  <3.74> ;''

0 (c-n-2+Yt' -
d (s)= Os0 (B4) <3.75> ."-

Then '-.

n.(S) 0u(x 0 O(B 5  0u(A')Os(B 5) .T"
m S nn "Ou(pA)O(4 Ts(pO(4 <3.76> m:gS

a n!s7 0 p 0 x - ')O (y 0 (B

n an s• '
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* 0 (xA

mb(s) =5b' Xb Yb

dd (s) =

O1 (c-n-2+y) 0s (y )0 (B) 0___

0 0(B U('4  B a(

O u(c-n-2+y t-A')O S(ypOS~
- u s ~ 0s~b ~<3.77>

0 (M )O (x)s 5 sb

Finally

d (S) 0(c-n-2+y -A')O (y )0 0 (n-M+1)
n - t .~y <3.78>
-( 0 (B )O(x)rn s 5s b

Again, <3.78> only requires

B + > C fl-2+yt A'+y + -lM-l+2

or

M+1 > C+Yt+Yp+yb-A' b-B5 B6 8679

Then

B6 c~YtYP~ybAxb-maxx p-AB 4 cnytYP)

= min{c~ytyP~yb-Axb-xp A'B4  CtY tybPA Xbc2ytA'YP}

B6 =c+Yt+Yp xpB 4  <3.80>

6 t p- p-
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for a solution to exist. Then,

B6 = c+yt+yp - max{xt,c-n-2+yt}

= cY tYp-x-+min{-xt,-c+n+2-yt}

= mi n{c+Yt+YpX Xtsc+Yt+YpX C+n+2-Yt }  -'

= min {Yt+C-xt+Yp- XpSYp- Xp+n+21}.'--= %

Also, y > xp, and n > M, so M+1 can not be greater than yp-Xp+n+2.

Thus, stability requires that

M+1 > (Yt+C-Xt) + (y-X

Finally,

M+1 > r{t(s)} + r{p(s)} <3.81>

Equations 3.70 and 3.81 are equivalent to Equation 3.51, thus proving

Lemma 3.2.

EOP

If the conditions are met in Lemma 3.1 and Lemma 3.2, then a

compensator exists that will stabilize the feedback loop and meet the

initial n-th derivative condition. At this point, however, there is

no guarantee that such a compensator will meet all other constraints

also, which is the final goal. Thus, a complete parameterization meeting

the n-th derivative constraint will now be derived. Then this

parameterization will be analyzed to see when it will also meet the

constraints {yo,. .. Yn-1

Lemma 3.3

For the system in Figure 4, described by Equation 3.12, iff the

• , .-

I," _' _ '. , _ -. _' ' _ ,' ', _% .. . . " " " " ' ... . . " : " t . • . . . , . -
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conditions r{t(s)} + r{p(s)} < M+I, and (dt(s),d p(s)) = 1 are met,
n

then a compensator exists that stabilizes both w(s) and z (s). Inn

this case, c(s) is described by Equation 3.8, where the complete

parameterization for w(s) is

d (s)
a~sn"i

w(s) = Wn(S) = (U(S)na (S)n t(s)-nr(S) d )u (s) + da(S)e(s) <3.82>
n n n r n' 5 n n

whenever w(s)n p(S) + v p(s) is not equal to zero. The function e(s) is

arbitrarily stable, a n(s) is per Equation 3.19, and u s(s) (and v s(s))
n n

is stable, and satisfies
u (s)n (s)dsnt(S) + v (s)d (S)= 1 <3.83>

Sn n Sn an

With w (s) described per Equation 3.82
n

zn(S) =(U Wn (snt(s)-nr(S) d v(S)
n n n rn n

-n (s)d p(s)n t(s)e(s) <3.84>
an n

Proof

To admit stable solutions, Property 3.10 requires stable gn (s),

k n(s), and x n(s). By Lemma 3.1, (dt(s),d p(s)) = 1 is necessary and
n n n

sufficient to stabilize k (s). By Lemma 3.2, r{t(s)} + r{p(s)} < M+1n
is N & S to stabilize gn (s) and x n(s), by guaranteeing that (dr Idc n

n n
Thus, the conditions are justified.

Assume these conditions are met. Then, Equation 3.12 has been

modified to Equation 3.36 (omitting the variable s and subscript n during

7"7
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manipulation),

U npn -x+d Wnanbn t  ',

abt mamb b--

n dr t

D D t r <3.85>
mam.

Also, bn (s) was defined by

nn' ~~~~d Cs) nn(),-.::

bn(S) = d (-.
n n

But, (d(s),dt(s)) = 1, so we can let
p tn

d p(s) n b(s) ; mb(s) 1 ; d t(s) = db(s) <3.86>
n n n n

Then, by Equation 3.26,

d (s) m (s)m(s)d (S)
n  an on  cnb d_

M (s)d (s)
ma s ,c
n n

But, by <3.21>,

d (s) m (s)d (s)
tn an an

so that

ma (s)d a(s) ma (s)d(s)
n n n n

or

d (s) d cS)
a n n

Then, by Property 3.9, there exist stable u (s) and v (s) such that
n 

'n

~~. . . . . .. . . . . .. .. .... ... . . ,. .., .- .'-'-.. .--; ,;.-.-.-.- -.. - . ... -. . . . . . . .....-.-.....-.... . -. -. .. "... .. . , . .. -. .-.. . . .-.... _.... ....- , - , -- .: .



55

u5 (s)na (s)nb(s)nt(s) + v5 (s)dC (S) I
n n n b n n

This can be modified to :-
u5(s)na (s)d p sifl~s) + v5 (s)da Cs) =1 <3.87>

n n n n in

Also, <3.85> can be modified as follows.

n dr t

zd + wn dni p n Dt r
a apbt mam

arb

n

r

u n n

zda+n nt=(n -nr)(vd + win d n)a a p pa r mp

(Cu ~ ~~ n n n a d5 d C nn r lapt<.9

pa r

naI

d. a..
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Particular solutions are then equal to

d (s)
wP(s) s p)n (s)n (s) niS) -n s)
n~s p u a~ t~s r n (5)u~

n tn rn  n

da(s)
zP(s) = (s)n (s)nt(s) - n (s) )v (s) <3.90>

n n n r n
n

To find the complete solution set, we also need the homogeneous

solutions. Typcially, this is accomplished by guessing the homogeneous

solutions that cause the left side of the equation (here, Equation 3.89)

to equal zero. Then, the guesses are tested to verify that they are in

fact the homogeneous solutions. Thus, first guess that

wh :dae

z= nadpnte <3.91>

where e(s) is arbitrarily stable, so that

zhd + whnadpn (-nadpn + daendpn 0
ad a pt a pte a a a pt ,-

as desired, verifying that <3.91> are homogeneous solutions. We must

also test that all homogeneous solutions are of the form of <3.91>. To
hh

do this, assume that w ns) and zCn(s) are stable, and satisfy

h +wn =0 <3.92>
da a apt

and define the function e(s) by

h
e = <3.93>d

a

Clearly,

wh = eda <3.94> ± -°
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and it follows from <3.89> that M

~~~e nnt of Eqain39nFnly

souto set eds mus be shownto5b
*~~~~~ prprte of n s)an dCsn

aa

of n()and d (s) are needed, as follows.

h

L4-(un + vd)d a a
a ~aa

h ::.h _ a aatt
wa d uautt wunv

a a

Invoking mad d n d p 3a dtan (tn d)

lu n v md wnua a at aa a -aat~te~wva+ d + (ut dt+ Vtd)
a a

h wn utn v d
e wh a+ whu anaV tm a+w4uan au nu t ma +hua a dttp <3.96>

p a

Also, by modifying Equation 3.92 yields

w wh nd n
Z h p t<3.97>

a

Thus, substituting <3.97> into <3.96> leads to

h h h
a a a tma ha t pa - a t tp <.8
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which proves e(s) is stable since it is the product and sum of stable

functions. Therefore, since the complete solution set is the sum of the

particular solution and the homogeneous solution, Equation 3.82 describes

the general solution set for w(s), and z n(s) is described by <3.84>. F

To complete the proof, we must show that at least one stable e(s)

leads to a w(s) such that w(s)n (S) + v (s) is not identically equal to
p p

zero, in which case since this is the denominator of the compensator,

the resulting compensator function would be undefined. Thus, again

omitting the variable s and subscript n,

d
wnp + V {( - n a u +deln +vr s a p p

d
((upna nr -a)u n + v + ed n <3.99>pr s p p ap

The function da(s) is not zero since it is the denominator of a (s)._a nni"'
n

Also, if n (s) is not zero, then w(s)n (S) + v (s) is a non-trivial
p p p

function of e(s), and is therefore not identically zero for all e(s).

If n (s) is equal to zero, then <3.7> implies that v (s) is miniphase,
p p

and therefore can not be equal to zero. Thus, in this case

w(s)n (S) + v (S) = V(s) is not equal to zero. Therefore, the proof
p p p

is complete.

EOP I

3.6 Simultaneous Derivative Constraints

Clearly, Lemma 3.3 could be used to find a compensator meeting all

initial response constraints simultaneously by applying it to each and

. . .- .,
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every separate constraint, from which the resulting parameterization

would be the intersecting parameterization set of all the individual

parameterizations. This could require a great deal of computation -

since tn (s),rn (s), and the resulting computed functions such as an(s)

depend on n. This normally will not be required though. Usually (and
p '.

possibly always) solving just the n-th derivative case also will guarantee

solving the 0-th through (n-l)th cases. A set of necessary and sufficient

conditions for this guarantee have not been found, but the following

lemma proves that usually only the n-th derivative parameterization will

need to be computed.

Lemma 3.4

Suppose the conditions are met to apply Lenna 3.3 for the n-th

derivative initial response constraint, so that w n(s) is computed per

Equation 3.82, resulting in z (s) per Equation 3.84. Then any compensator
n

based on Equations 3.82 and 3.8 will stabilize not only z (s), but also
n

zo(s) through zl(s), whenever

1. The input t(s) has fewer than three poles at s = 0. <3.100>

or

2. If the above condition is not met, then <3.101>

{(#poles t(s) at s = 0) - 3} < {# zeros p(s) at s = 0}.

Proof

Zn(s) is given by

Zn(s) tn (s){-w(s)n (s)dp (s) + u (S)n (s)} - rn(s)

~n+ sn-i+ly
sn+ 2t(s)H (s) E n <3.102>

2u1 i =0

Where H (s) is stable whenever w(s) is stable, as is the case in
v u1

Equation 3.82. Then, manipulating <3.102> leads to
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z (S) =s 4 tsH~n

zns t~ 1)H (S).103>Y
s +y v (s-u

1 i=0

z (S)n-i

n n-i n-i+1 t(s)H~ (S)-~ s y. <3. 104>
21 1=0

Tus, usinc e nsa cstao nt i sfiinu osil o eesr

to prov th Zn ) is) tabl bypovn s dividesl Zny hn fws

n-
sn+1~~~ ~ ~ Cs) () E sni,<314

n n 315
z n-s sd ) nt~)es

ann

whepre d s iie ss that z Cs) is stableb prvn sdide. Then bove s
n an n

equtio can be modfie to n(S



61

zn(s) = n ()u (s)v (s) - d (s)e(s)}
n n n

d (s)

- n(s){dn- vs (s)} <3.106>r n  d r s s n 
'n

Clearly, n (s) will always be divisable by s, because <2.39> describes

rn

rn (s) as a polynomial in s with no constant term. Thus, zn(s) will be

divisable by s whenever either nt(s) or na(s) are divisable by s
n n

(possibly other times too), since Zn (s) will then be the sum of terms

divisable by s.

Therefore, first consider nt(s), as follows.
n

Generally,

t(s) = <3.107>

is a representation for t(s), where the sc term represents the only

poles or zeros at s = 0, so that c is any integer. This leads to .

t (S) s n+t(s) =n2cOX <3.108>

Obviously, n t(s) will be divisable by s iff

n

n+2-c > 0 <3.109>

Now, if <3.109> holds for n, then zn.(s) is stable. Then, this entiren-1-.s,

argument can be repeated for the case znl(s) is stable to show whenn-1.

Zn 2 (s) is stable, which will result in the inequality

(n-l)+2-c > 0 <3.110> 1

..................................... . .
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Thus, to stabilize zo(s) through zn- (s), the worst case inequality,

which proves all zi(s), i < 0 < n-i, are stable, is the case when n = I

and (n-i) = 0. The resulting inequality is

1+2-c > 0

or

c< 3 <3.111>

which is equivalent to saying t(s) has fewer than three poles at s = 0.

Therefore, <3.100> is proved.

If n (s) is not divisable by s, another condition that z (S) istn nn

divisable by s is that n (s) is divisable by s. Pursuing this case, firstan
assume that n (s) is not divisable by s, so that Equation 3.111 does

not hold, but that

0 (x)u ttn(s) = sc- n_2 O(Yt) <3.112>

where c-n-2 > 0 is a general expression for t (s) based on Equation

n

3.107.

Thus,

cn- 2s -Ou(y t )
dts u <3.113>ts) s(max{xt,c-n-2+y t})

Also, describe p(s) generally by

sD0 (x)
p(s) = u <3.114>

where D > 0, and 0 (yp) may be divisable by s, so that D represents the
u p

* .' . . . .. . .
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number of zeros the plant has at s 0. Of course this leads to

s 0 (X )
np(s) = 0s(Yp- <3.115>

since r{p(s)} > 0 is a general assumption. This of course leads to,

by definition,

n (s) sDu (x ) 0s (max{xt,c-n-2+yt}) -

a(s ) = = sp t <3.116>ni s p (yc-n-2 0
n ut

Obviously, n (s) has max{O,D-c+n+2} zeros at s equal to 0. Thus, if
a n

D-c+n+2 > 0 <3.117>

for all n > 1, then n (s) will be divisable by s. Studying the worstan

case again of n : 1 leads to the general requirement that

D-c+1+2 > 0

or

c-3 < D <3.118>

By our definitions, Equation 3.118 is equivalent to the statement of

Equation 3.101, thus the proof is complete.

EOP

3.7 Initial Response Theorem and Parameterization

The exciting climax of this thesis is finally upon us! The

groundwork has all been laid, so the Initial Response Theorem and the

Initial Response Parameterization can now be given.

Theorem 3.2 - Initial Response Theorem (IRT)

For the system in Figure 2, assume that r{p(s)} > 0. Also assume

-/,L~~~~~~~~~~~.--_._...-............................".........-. "".. . """
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that

1. The input t(s) has fewer than three poles at s = 0.

or

2. If the above condition is not met, then

{(# poles t(s) at s = 0)-3} < {# zeros p(s) at s = 0}

Then a set of compensators c(s) exists that will simultaneously stabilize

the feedback loop H (s) (without RHP pole-zero cancellations between

p(s) and c(s)), and meet the initial condition constraints

{V0(+ ,..v (0+)} {Y09,...,syj} iff: ; '

1. rjt(s)} + r{p(s)j < M + 1. -.

and

2. (d t (s),dp (s)) -- 1.
3W p

Where yi =0 for i < M, and YM 0.

Proof

The lemmas and properties derived earlier were dependent on the

assumption that r{p(s)} > 0. Then, Theorom 3.1 and Figure 4 lead to

Equation 3.12, which defines the complete set of compensators that

meet both feedback loop stability and the n-th derivative initial

response constraint are those which admit stable w(s) and z (s). Next,

Property 3.10 states that both w(s) and zn(s) will be stable iff g n(s),

k (s), and x (s) admit stable solutions, as described per Equations 3.33,n n
3.34, and 3.35. Then, Lemma 3.1 and Lemma 3.2 give the necessary and

sufficient conditions to stabilize these three quantities to be

(dt(s),dp(s)) = 1 <3.119>
n

n .I ,
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and

r{t(s)} + r{p(s)} < M + 1 <3.120>

where yi = 0 for i < M, and YM 0. Thus, <3.120> leads directly to

condition 1 in the theorem, while <3.119> is dependent on the derivative

constraint considered. Finally, Lemma 3.4 states that if Equations 3.100

or 3.101 are satisfied, then the n-th derivative solution also stabilizes

all lower derivatives. Therefore, to get all constraints, let n = j

for the constraints {yo,...,yj} leading to the assumptions numbered

1 and 2 in Theorem 3.2, as well as dt(s) = dt(s) in Equation 3.119, so
n

that (dts),dp(s))= is required.

EOP

To reiterate, as the proof for Lemma 3.4 showed, <3.119> and <3.120>

may not be necessary assumptions, but were shown to be sufficient. Also,

obviously these pose very little restriction anyway, so that this point

will not be labored further. Now the paramterization will be given for

the compensators that achieve these constraints.

Theorem 3.3 - Initial Response Parameterization (IRP)

Given that the assumptions and conditions posed in the Initial

Response Theorem are met for the constriants {vO(0+),...vj(O+)} =

{yo,...,yj}. Then, let the plant be comprimely represented by

n (s)p(s) =

so that stable u (s) and v (s) exist such that
p p

u (s)n (s) + v (s)d (S) = 1
p p p p
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Also, define

tj(S) =s+2t(S) = nd.s

where n (s) and dt(s) are coprime. Next, define

j ".
r.(s) S 5j-i+1 tsrs) i=O Yi

where nr (s) and d (s) are coprime, and let

n(s) na(s)

a.(S
t. a.

where n (s) and d as) are coprime. Also, define stable u.Cs) and

v (s) such that
3

us(s)n a(s)d p(s)nt(s) + Vs(s)da(s) = 1 t.-"

Then, the complete set of compensators that stabilize the feedback loop

for the system in Figure 2 (without pole-zero cancellations between

p(s) and c(s)), and meet all j + I initial response constraint is given

by

-w(s)d p(S) + u (s)C(S) =w(S)np(S) + v'p(S)-

where w(s) is stable, and given by

d (s)a.
w(s) = {up(s)na(s)ntjs) -.nr(s) -.n u (s) + da(s)e(s)

ImlI
P' a !)'js S ~

r,.
.... ... *.*. .. . f. ~'t~fft~**ftt 3 ftf~ .~ ftt*:t~ft ft" *"t
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where e(s) is an arbitrarily stable function such that w(s)n p(S) + V p(S)

is not identically zero.

Proof

Theorom 3.2 states the assumptions and resulting N & S conditions

for a parameterization to exist. Also, Lemma 3.3 gives that complete

parameterization for w(s) leading to the n-th derivative constraint to

be met. If we let n = j where j is the maximum order derivative initial

constraint, then the assumptions in the IRT guarantee that for n = j in

Equation 3.82, all constraints will simultaneously be met. Also, the

proof for Lemma 3.3 showed that at least one e(s) exists so that

w(s)n (S) + V (s) is not zero, in which case the resulting compensator
p p

would be undefined, even though z (s) and w(s) may be stable by Equation
n

3.12. Finally, c(s) was defined in Equation 3.8 exactly as stated in

Theorom 3.3.

EOP

3.8 Summary

The IRP can be used to find the complete set of compensators

that will meet any given initial response conditions that are within

the bounds of the constraints and assumptions given in the IRT. This

then gives the designer a tool that may help him to shape the transient

response of a system as he desires. For example, designing for large

positive initial values on the initial response derivatives should lead

to a "faster" response than designing for smaller initial values on

the same derivatives.

. . . .-. .
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Theoretically, these theorems could be used to design precisely

an entire system response. This can be seen by representing the

frequency response of the entire system in its power series form, as 4

follows.

-1 -2 -3 -4H(s) = as + a,s + a2s + a3s +... <3.121>
023

Of course, this transforms to the time domain as

a22 + a3 t3

h(t) fa + alt + -- + - +...U(t)

a.
:E t tU(t) <3.122>
i =o

It is easy to see that the initial i-th derivative is equal to aii.e.,

hi(O + ) = a <3.123>

But, the IRP allows one to specify any and all h (O+) whenever the

bounds of the IRT are not crossed. Thus, for any i, a. can be specified,
1

and looking back to <3.121>, one can see that any or all (theoroetically)

of the power series for the transfer function can be specified!

-J-;

i. °

. ... .- .V.".V . . . . . . . . V



CHAPTER IV

EXAMPLES

4.1 Introduction

* In the previous chapter, the IRT and IRP were derived. Now,

several examples will be given which explore the usefulness of these ..

theoroms.

4.2 Introduction Example

In Section 1.2, an example problem was given. For that example,

Equation 1.2 and 1.8 were given to describe the set of compensators that

meet the desired constraints, but the equations were not derived. Thus,

the IRT and IRP will now be used to solve this problem. Figure 1

pictured the system in question, which is given again in Figure 5. For

the system, the constraints given were that the feedback loop be stable,

and v2 (O+) equal 3(= yo).

For this system, r{p(s)} = 1, and the input has fewer than three

poles at s = 0 (it actually has none). Therefore, the assumptions

necessary for the IRT are met. Then, since yo = 3, M is equal to zero.

Thus, the

-- Lit

Figure 5. Example From Introduction

"-- ." .....- '- - "-"................................................................"-. , .. ...
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first condition given in the IRT is met, i.e.,

r{t(s)} + r{p(s)} < M + 1 ?

0 + 1= 1< 0 + 1I= I ."

Also, since j = 0, Equation 2.39 leads to

sO+2t s2 ""
t0(S) = t(s) =

This can be coprimely represented by

2 nts)
(S) (s+') 0t01 d (S) <4.1>

(s+1)20

The plant can be coprimely represented by

1~s) = 1 +1 n (s)
p(s) = s- = <4.2>

Obviously, (dt(s),d (s)) = 1, so the IRT dictates that a set of
t0 p

compsensators exists that meets the desired constraints.

Now, moving on to the IRP, there must exist stable u (s) and v (S)

p p

such that

u p(S)n p(S) + Vp (s)d p(S) = 1

or

p 1Up(S)s-- + V(S)s-$ <4.3> .

Obvious solutions to <4.3> are

u (s) = 2
p

and <4.4>

vp(S) = 1

NI
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Also,

3s nr(s)

O0(s) s= =1 d_(S) 4.5>
s+1 r0

and

1 n (s)
a n(s) s+1 s+1- 1  0 <4.6>
a(s)=dt 1 1 d (S)t i 2 -T- a

(s+1)2  +

There also must exist stable u (s) and v (s) such that

us(s)na(s)dp (S ) + V=s1)da(S) I

or u~)s 2(s- 1) +vs 1_
u (S) i) + sv <4.7> ;

so (s+1) 3 s +

A little calculation yields adequate u (s) and v (s) to be0 0

u (S)=1

and <4.8>

V _ 4s2+3s+1
so-2 (s+1)2 -

The IRP then gives the complete set of adequate compensators to be

-w(s)d (S) + u (S)C(s) w s)n p(S) + Vp(S) ,

-w(s) + 2\(' + 1 <4.9>

s1)
w(S)s)--u + i1:'

where w(s) will be described momentarily. Of course, <4.9> is exactly

iIb.

7>
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equal to <1.2>. The IRP also describes w(s) by

da (s)

w(s)= {u (s)n (s)nt(s) - n (s)d 0}us(s) + da (s)e(s)
0 0  0 r 0 0* 0

where e(s) is arbitrarily stable such that w(s)n (s) + v (s) is not
p p

identically zero. Substituting in values for the current functions

leads to

s2 3s- i--}1 1 e(s) ,
w(s) = {2..-3 s+41 + e s,

(s+1)

which simplifies to

23 1
w(s) - + "s23s e(s) <4.10>

(s+l) +

which is identical to <1.8>.

4.3 dc Motor Initial Response Problem

As a second example, consider for the plant a field-controlled "

dc motor. Reference (6) gives the transfer function for this type of

motor as

p(s) w K 1 <4.11> a.

v RF (l+sTf)(l+s'Tm)

where the parameters are defined as follows.

w = velocity - rad/sec

vf = input voltage -volts

K = motor constant -lb-ft/field amperes

R = field resistance - ohms

F = total viscous friction - lb-ft/rad/sec

. .. .
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Tf field time constant henry/ohm "'*

Tm = mechanical time constant - rad-sec

Also, assume the motor is powered by a step input equal to

t(s) v <4.12>

and that the motor is controlled in a feedback system as in Figure 6.

Now analyzing this system using the IRT, we find that

r{p(s)} = 2 > 0, and t(s) has only one zero at s = 0, so the assumptions

of the IRT are met.

Figure 6. dc Motor Example

Then, r~t(s)} 1, so

rft(s)} + r{p(s)} =1+2 =3 < M+1

or

M > 2 <4.13>

thus demonstrating that any c(s) will lead to w(+) and w1 (+) equal

zero. It is also obvious that (dtjs),d (s)) =1 for any j. Therefore,
j

a compensator parameterization can be found for any set of initial

1+response constraints as long as w(0+) and w (0+) equal zero.

I.

Fgr. dc. otorE.......:)
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Intuition dictates that controlling even just the value of w2(O+)

should give some control over the transient response. Thus, this theory

will be tested by requiring {w(O+),w 1 (o+),w 2(O+)} = {O,O,A) where A is WI

a real number. One would expect large values of A to lead to faster

responses, with more overshoot than small values of A generally. -

To that end, we apply the IRP with j = 2, and assume that neither

T or T are equal to zero or one. Then, a coprime representation for
f rn

p(s) is

KR F

2 n (s)(s+l) <.4

p(s) =(+sTf)(l+STm) = <4.14>

(s+1)2

which leads to

u (S) - s~b <4.15>

p s+1

and

b 3s+b 4
v (S) = s+1 <4.16>

where

b- TfT <4.17>

3-b3(Tf+Tm)

b4 - T'fT m

3-b3-(Tf+Tm)b4
K

RFN
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1-b 4
2 K
RF

Also, a orm ersnainfor t (S is
a *~u~.JhfA.~u2

3
3S t

54v _(s+1) = 2 <.8

3 2

and r2(s) is coprimely represented by

2 2-i+1 As n (s)
r2(s) E s w(O) =As = (s1

i=O I d<4.19>
~TT r2

Equations 4.14 and 4.18 lead to

K

n (s) (S+1) K

t2

which can be coprimely represented as

K na(s)

1R T 2
a2(s) 1T a2~ 4.0

The IVP also dictates that there are stable u (s) and v (s) such that
~22

u5 (s)na (s)d (s)n (S) + v (s)da(S) =1

2 2 2 2 2

and substituting

3
Ks (1+sTf)(1-.sT) vs) =1<.>

s F5 +
2 (s+1) 2



76

Solutions for us(s) and v ss) are
Cl+2 2'

us(S) = s+1 <4.22>
2

and

c s 4+C 3 2+C s +c
v (s) = <4.23>

(s+l)5

where .

=RF i<4.24>ci KV TfT.-
f r

and

6 Tf+Tm) """
c2  RF c1( <4.25>" c2 = KV T~

Rf m

Note that c -c7 can easily be found, but will not be written here since

v (s) is not needed to solve for w(s). Now, the entire solution set

for w(s) is solved as follows.

w(s) = {Up(s)n (s)nt (s) " r (s)d (S)}u s) + da (s)e(s)
p 2  2 2 2  ~2 2

b1s+b2 K vs3  s 1} lS+C2 I e(s)
s+1 RF (s+1)3 " s+l s+1 s1

dls 5+d s 4+d3 s 3+d4 s 2+d5s "

5 1 2+1 e(s) <4.26> F
(s+1)5+sT

where

1 Lb RF~

d T {bA ; d2 through d5  constants <4.27>
f m

V -- -- - . -~ .. . . . . '.,
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and e(s) is arbitrarily stable. Thus, the set of stabilizing

compensators that cause w2(0+) = A are given by

-w(s)dp (s)+u p(S)

c(s) = w(S)np (S)+V P 57

(1+sTf)(i+sTm) bls+b2-w(s) f+ -
(s+l)2  s+1 <4.28K ~<4.28> .""

-) b3s+b4w~) RF 3+

2 s+1
(s+".

where {b1,b2,b3,b4} are given by <4.17>, and w(s) is given by <4.26>

and <4.27>. Note that since e(s) is arbitrarily stable, but is multiplied
"..

by 1/(s+1), it can always be used to change any of the constants

{d2,d3,d4,d5 } arbitrarily, but can not modify d1. Thus, it is important

only to know dI.

One obvious choice for e(s) is to set it so that

W( (s+)5  d1  <4.29>

For example purposes, such a compensator was chosen to demonstrate how

varying A affects the transient response of the system. Invoking Equation

3.10 leads to (where h(s) represents the feedback loop)

t(s)h(s) : t(s){-w(s)n (s)d (S) + u (s) n (S)}

p p p p

KKv~ d -fi (1+sTf)(l+sTm) (bls+b 2) K

s 1 2 (s+1) 2
(s+i) (s+i) (s+1)

RF .-I-..
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which after some manipulation reduces to

As 2 KV l +b2-dl(T + T )}s + L- (b2 d)

t(s)h(s) 4 <4.30>
s(s+1) 4

A partial fractions expansion eventually helps lead to the time response

L1{(t(s)h(s)} = th(t)

-t+(A-e 2) t2 +(e1-e2-A) t3 .

{e2+e t(-e 2-e2t +- 2) + 6 )}U(s) <4.31>

where

e K V (b +b2 -dl(Tf+Tm) )  <4.32>1 RF 1 2 +)

and

V (b -d) <4.33>

RF 21

Now, assume that the input v = 100 volts, and the motor has the

following constants.

K = 60 lb-ft/amp

R = 50 ohm

F = 2 lb-ft/rad/sec 4.34

Tf = .4 henry/ohm

T 8.75 rad-secm .

These values were used with several values for A, and the resulting

time responses were plotted in Figure 7 and Figure 8. Note that as

expected, even though only w2(0+)(=A) was directly controlled, increasing

this produced faster responses and eventually increasing overshoot.

.II
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4.4 Combined Constraints Problem

The previous problem dealt with controlling only an initial value.

Though the design technique yields feedback loop stability, there were

no constraints on the asymptotic value of the motor velocity. Thus, as

Figure 7 and Figure 8 show, using the previous technique alone can lead

to a wide variety of final values. Of course, a common practical problem

could arise in which both the initial response, and the asymptotic

response must be simultaneously controlled. Although a general

parameterization has not yet been derived, specific problems of this

type can be treated now by invoking both the IVP, and the Tracking Theorem

given in (10) and Appendix B. Compensators which meet both theorems

can be found, and then analyzed to find the common parameterization.

As an example, consider the same motor in the previous section,

2+with the same constants, and the same constraint w (0+ ) = A. Thus,

<4.26> describes w(s), 'and <4.28> describes c(s). Now, assume that the

velocity of the motor shaft is to follow the input voltage v so that

w(-) v. This part of the problem can be solved by the Tracking

Theorem iff the necessary and sufficient condition that n (s) and dt(S)
p dt~

are coprime is met. Of course, this would not necessarily guarantee

that both the IRP and the Tracking Theorem have any common solutions.

Checking this conditions, t(s) was given in <4.12>, and can be coprimely

represented by

vt's) S+- nt(s) <,

t(s) s+ t <4.35>

...--...

s d t, I

", . .+•
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*Equation 4.14 gives n p(s), which is obviously coprirne with d t(s) above,

so the condition is met. Thus, according to the Tracking Theorem,

there exist stable Up(s) and vp(s) such that

pt pt

which leads to

K

upt(s) (RF) + v (s) S <4.37>

Solutions for <4.37> are easily found to be

RFupts

and <4.38>

vpt~s s+1

Also

d (s) (1+sTf)(1+sTM) s+1
a'(s) (-)

tS ( s+1)

which can be coprimely represented by a'(s) =n 1(s)/d 1(s), where
a a

na (s) =(1+sTf)(1+sTm)

(s+1)2

and <4.40>

d '(s) sa s+1



r%

83

Now, the Tracking Theorem gives the solution to be

{-w'(s)d p(S) + u p(S)}
c(p() + Vp(S)} <4.41>

where

w'(s) = -upt(S)vp(s) + e'(s)da-(s) <4.42>

with e'(s) an arbitrarily stable function. Therefore, substituting

into <4.42> gives

RF b3s+b4se(s)j- <4.43>

Comparing <4.28> and <4.41>, one can conclude that simultaneous

solutions to both the initial value problem and the tracking problem are '-

those where w(s) w'(s). Thus, equating <4.26> and <4.43> leads to

5 4 3 2 5dlS +d2s +d3 s +d4s +d +."e"+ e(s) >'
)5 s+is-1"(s+l '" ,

RF b3s+b4K s+l + e'(s) s

which can be rearranged to

d s  4' 3+d s4+d2s3+drs2+d s
-1 1 2 3 r 5s-l e(s) + s--e'(s) :+1+ (s+1) 5 .

b s+b4+ bF 3 4<4.44> "

K s+ "1

The above equation can now be solved be differential equation methods,

as follows. First, a particular solution can be found by recognizing

the coprimeness of the functions multiplying e(s) and e'(s). Proceeding

with this, we find that

S. I ~ °
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-1 + 1 s. l - 1 <4.45>
s+1 s+1

Now, multiplying the right side of <4.44> by the left side of <4.45>

leads to the particular solutions

5 4 3 2dls +d2 s +d3 s +d4 s +d5 s RF b3s+b4  <4.46es)+ }<4.46> -1

(s+l)5 K s+1

and

5 4 3 2des +d2 s +d3 s +d4 s +d5 s RF b3 s+b 4
e s){(s+l)5 K s+1

Homogeneous solutions can be found by solving for

leh(s) + s e' (s) = 0 <4.48>

Obvious solutions to the above equation are

eh(s) = s k(s)

and <4.49>

e h(s) k(S)s+l 1i

where k(s) is arbitrarily stable. Normally, one would prove that <4.49>

is in fact the complete homogeneous solution set, though this step will

be skipped here. Now, the complete solutions are

e(s) = e (s) + eh(s)

and <4.50>

e'(s) = e '(s) + e' h(s)

The compensator can now be represented by <4.41> and <4.42> or by <4.28>

and <4.26>. Using <4.42>, we find that w'(s) is given by

. , -.- ,
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w'(s) = w(s) =-upt(s)vp(s) + e'(s) d a ,(s)

p RF b3s+b4  dIs 5+d2s 4+d3s 3+d4s 2+65s 
K s+5 + 5

RF b 3s+b4  1K S+ + k(s) 11 <4.51>

As in the previous example, a particular k(s) has been chosen for

example purposes. In this case, k(s) can be chosen so that the term

inside the { I in <4.51> is equal to dI + (RF/K)b3. Using this k(s)

RF b3s+b4  F s
w(s) =-K s+1 + {d +-b 3 s+.

1 K 4 <4.52>
s+1

Now, invoking <3.10> leads to (where h(s) represents the feedback loop)

d s RFK

d1  - b (1+sTf)(1+sT m )
t(s)h(s) s K (s+)2

s s+1 2 (s+1)

bls+b2

s+l (s+1)

which reduces to

As3+q2s 2+qs+v
t(s)h(s) = <4.53>'

s(s+i)
5

where

...................... .. . . .

. . . . . . . . . . . . . . .
. .. . . . . . . . . .
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q . {bKV2+b d(T +T)
2 RF 12 1 f m)} + VbTfTm

and <4.54>

q =K {2b2+b-d + vb4(Tf +T)
3 RF {2+ 1-d1} 4f

Invoking the Final Value Theorem on <4.53>, we find that asymptotically

w(t) is equal to v. Also, the Initial Value Theorem shows that

w2 (0+ ) = A. Thus, we do in fact have an adequate compensator. Now, a

partial fractions expansion leads to the time domain response

L {t(s)h(s)} = th(t)

t2  t3  "

Sv+e'(-v-vt+(A-v) 11-+ (q2-sA-v) 6
t4  '+ (A-v+q3-q2 _L U(t) <4.55>

3 - 2 2-

The constants in Equation 4.34 were used for Equation 4.55. The resulting

response curves were again plotted for several values fo A in Figure 9

and Figure 10. Note that the results are again as expected. Increasing

A generally increases the speed of the response, and the amount of

overshoot, while all of the curves have the steady state value w 100

rad/sec.

• 7

" I

i-L-
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'J

w

w~)=1.2885s- .18367
a:; Ws

0~

0r

S D
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a: ws) =. 8123s -. 18367
5+1

0n
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Figure 9. Time Response Curves
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CHAPTER V

RECOMMENDATIONS

The work in this thesis leaves the doors open for the study of.

several related topics. The following list contains recommendations

of a few such problems which could be researched.

1. The problem considered here only utilizes unity gain in the

feedback loop. An obvious extension is to consider the more general

case with non-unity feedback gain.

2. To be truly useful for "real world" applications, this single-

variate case should be extended to multivariate. Similar extensions

have previously been handled for other parameterizations, for example

in (1, 4, 7, 14, 16, 17, 18).

3. A third extension would be to develop a simultaneous Initial

Response-Tracking parameterization, as well as other similar simultaneous

parameterizations. These would be based on the IRT and IRP, and

parameterizations such as those in (10, 11).

4. The examples in the previous chapter were designed to illustrate

the usefulness of specifying initial response values. This technique

should be explored and experimented with further so that perhaps a

general design method would be derived. The power of specifying multiple

initial response values particularly needs further exploration.

5. At the end of Chapter III, it was illustrated that specifying

initial response values is equivalent to specifying the coefficients

of the power series of the transfer function. To be completely

.. a

* '* . ' '-* - "- -*" - -' . " , -- ,-,* '.. - -. ""- "". .,." -""""- *... . " "- ""- - " -s. - " - ." - - . "" .*2.i
"* '*" % *-"- *-"-." *.*.**.' '" ". - . ."-- :" "n -. :" "'° r' ' ' """ . .**".'" -*.".-.. "'*. . . . . ..:" "" " /
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specified, of course, an infinite number of coefficients must be

specified. However, the concept of approximately specifying the system

transfer function by only specifying a finite number of coefficients

could be pursued. This could lead to the ability to design for an

entire specific response curve simply by applying the IRT and the IRP.

6. The IRT contains two assumptions based on Lemma 3.4 which

guarantee that the parameterization for a particular initial response

derivative will also meet the lower order derivative constraints. The

assumptions are not very limiting, but it is possible that they are not

required at all, or that less stringent assumptions could be used.

This problem could be further researched.

7. The results in this thesis depend upon the system model, and

no consideration has been given for the robustness necessary usually

in the real world due to approximations, drift, etc. This robustness

topic should be looked into further, as it has been for other

parameterizations, as in (11).
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Several properties were given in Section 2.3 that will be proved

in this appendix. The properties relate to the transformation described

in Equation 2.17, which is repeated below.

H(s) i {H(s)l H .(1) .cA.l>

T1 H(s)} Hi

Additive Property

H(s) + F(s) = TH(s) +F(s)} A2

Proof

Represent any two transfer functions, H(s) and F(s) as follows.

H~) (a s+b1) (ans+bn
(c s+d). .(cms+dm

F(s = gs+f1). ..(e s+f~

H~s) - HO) = .. b1).. (.)

s c1  c n+m
-+ di)** + d)

(a 1+b .i) .. (a n+b 5r )sm n <A. 4>

and



95

(el e
_- + f)..(-LP.+ f ) p+k

s 1 _ 1 s p sF(s) -F() =pI

(e1 ~ ~ s + fi)..( )

(el + f 1 ..( + f pS) Ik-

Adding <A.4> and <A.5> yields

(a1 + bjs)... .(an + bns )Sm-n
H(S) + F(s) (c1 +dW ... (cm + dms)

+(el + f1 s) ... (e p + f _ ~ -
(g, + jIl) ... (gk + i!

Conversely, by <A.3>,

Hs +Fs)=(a s + bi)... (ans + b n)
(c s + d). *(c ms + dm)

+(di s + f ).. .(e ps + f )
(91s + jl) ... (ks + k

Then, transforming the sum leads to

(a, a s+m
_+ b1) ... (--.Ebsn

T{H(s) + F(s))
Il m+d, n+m

5+ f) ... (-+

gk p+k

+ j,

s + id
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T{ ~ ) ~ s } = (a 1  + bi s) ... (a n + bns s -
T{H~) + ~s)} (c1 +d1.1)* .. cm +d m-

( e1 + f1l) ... (e~ + f s

Equating <A.6> and <A.8> leads directly to

H(s) +F(s) =T(H(s) +F(s)} <A.9>

EOP

Multiplicative Property

H(s)F(s) =TfH(s)F(s)1 <A.10>

Proof

This proof proceeds exactly like the proof for the Additive Property,

except that the product of H(s) and F(s) is considered rather than the

SUM. Hence, this proof will not be reiterated.

EOP

Inverse Transform Property

H(-!) =H(s) <A.11>

Proof

Again, represent H(s) per <A.3>, and the resulting H(s) per <A.4>.

Then
(1 b, b

(a+ . (a + m)mn r+n

(1 s m s
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H(1) (als + b)...(ans + bn)S m

( ) sClS + d1  (CmS + dm)sm-n sn

(als + bl)..,(ans + bn)

(cls + di)...(CmS + dm )

= H(s).

EOP

V~ -V

Transformation Stability Property

If H(s) is stable (or unstable) in the s-domain, then so is H(s)

in the s-domain, and visa versa.

Proof

Once more define H(s) generally by Equation A.3 so that

(als + b)...(ans + b)
H(s) (cls + dl)" (c s + dm)

m m

and the resulting H(s) by <A.4>, thus

(a1 + b1S)... (an + bn S)Sr-n
H(S) = (c1 + dis)...(cm + dmS)

Then, first consider only stable H(s). Under this condition, n < m,

and the poles are all in the strict LHP. Of course, to meet this LHP

requirement, the poles, pi, which are located at

d. t
_ l i.- <A.12>

Pl ci  Pi ILi

must be such that

Ipi > 0, but finite <A.13>

II
:2

. . - .
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and

e: 900 < ei < 1800  or -180> ei > -90o <A.14>

To meet Equation A.13 requires that {ci,d i} contains no elements equal

to zero, but no such requirement is on {ai,bi}. Therefore, if there

are A elements in the set {bi}, 1 < i < n, equal to zero, then

r{H(s)} = m - (n-A) - (m-n) = A > 0 <A.15>

proving that H(s) is proper, as required for stability. Also, H(s) .

has its poles located at pi, where

c ci

Pi - d d i ,- - -  : Pi1L i <A.16>

Since Ipij is greater than zero and less than infinity, so is Ipi l .

Also, since o. = -ai , then by <A.14>,

0 s t 900 < < 180 ° ' or -1800 > -900 <A.17>

sthat oi is in the LHP. Therefore, H(s) is stable if H(s) is.

Consider now unstable H(s). First consider the case where the

transfer function is nct proper, so that n > m. Analysis of <A.4>

illustrates that this results in (n-m) poles at s = 0 for H(s), which

makes H(s) unstable. Next, consider finite poles of H(s) in the closed

RHP. In this case

-900 < < 900 <A.18>

which by Equation A.16 results in 0. in this same unstable region,1

since e.i = - )i" Therefore, unstable H(s) lead to unstable H(s).

Conversely, the inverse transform H(-) is equal to H(s) by the

s... .

:<...-...-...-..-..-...-............. ....-..... -.......-.... ....... ........... . .
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Inverse Transform Property. This is symmetrical with the transformation

of H(s) - H(1 ). Therefore, stability (or unstability) of transformation
5

for the inverse transform holds also, because of this symmetry property.

EOP

SL
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Reference (10) states the following theorom. The proof can be

found in that reference.

Tracking Theorem

Give p(s) there exists a compensator for the feedback system of

Figure 2 which stabilizes the feedback loop and simultaneously causes

it to track the impulse response of t(s) if and only if n (s) and dt(S)

are coprime. In this case let upt(s) and vpt(s) be stable functions

such that

Upt(S)np(S) + Vpt(S)dt(s) = 1

and let a'(s) = n a(s)/d a(s) be a coprime fractional representation of

a'(s) = d (s)/dt(s). Then the desired set of compensators take the form

{-w(s)d p(s) + u p(S)}
C(S) = {w(s)n (S) + V (S)}

where

w(s) = -upt(S)vp(S)vp(s) + e(s)da ,(s)

with e(s) an arbitrarily stable function such that w(s)n (S) + v (S)
p p

is not identically zero.

EOT

• ° . .. -. • . ., , •. .° • .• • . ........ ..... -oo ...- - %, .
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